Cambridge International Examinations Cambridge International General Certificate of Secondary Education | CANDIDATE
NAME | | | | | | |-------------------|--|--|-----------------|--|--| | CENTRE
NUMBER | | | NDIDATE
MBER | | | # 9649395153 # **CO-ORDINATED SCIENCES** 0654/41 Paper 4 (Extended) October/November 2017 2 hours Candidates answer on the Question Paper. No Additional Materials are required. #### **READ THESE INSTRUCTIONS FIRST** Write your Centre number, candidate number and name on all the work you hand in. Write in dark blue or black pen. You may use an HB pencil for any diagrams or graphs. Do not use staples, paper clips, glue or correction fluid. DO NOT WRITE IN ANY BARCODES. Answer all questions. Electronic calculators may be used. You may lose marks if you do not show your working or if you do not use appropriate units. A copy of the Periodic Table is printed on page 32. At the end of the examination, fasten all your work securely together. The number of marks is given in brackets [] at the end of each question or part question. This document consists of 32 printed pages. 1 Fig. 1.1 shows a diagram of the male reproductive system. Fig. 1.1 | (a) | (i) | Name the parts labelled A and B in Fig. 1.1. | | |-----|------|--|-----| | | | A | | | | | В | | | | | | [2] | | | (ii) | Draw an X on Fig. 1.1 to show where sperm are made. | [1] | | (b) | Mei | osis is the process that produces gametes. A sperm is the male sex gamete. | | | | (i) | Define the term <i>meiosis</i> . | [4] | | (ii) | Describe two differences between a male gamete and a female gamete in humans. | | |-------|--|-----| | | 1 | | | | | | | | 2 | | | | | | | | | [2] | | (iii) | Name the term used to describe the fusion of the male gamete and female gamete. | | | | | [1] | 2 Fig. 2.1 shows part of the Periodic Table. Fig. 2.1 | (a) | Stat | e the number of elements in the first period of the Periodic Table. | | |-----|------|---|-----| | | | | [1] | | (b) | The | atomic number of magnesium is 12. | | | | (i) | Define the term atomic (proton) number. | | | | | | | | | | | | | | | | [2] | | | (ii) | A sodium atom is 23 times heavier than a hydrogen atom. | | | | | Explain this statement in terms of atomic structure. | | | | | | | | | | | | | | | | [2] | | (c) | The | electronic structure of a carbon atom is 2,4. | | | | Stat | e the electronic structure of a magnesium atom. | |[1] # (d) Sodium is produced industrially using electrolysis. Fig. 2.2 shows a diagram of the process. Fig. 2.2 State the name and chemical formula of gas **G**. | name |
 | | |------------------|------|--| | chemical formula |
 | | [2] | (a) | Five | ve different types of power station are listed. | | | | | | | |-----|-----------------------|--|--|--|--|--|--|--| | | A
B
C
D
E | hydroelectric
gas-fired
nuclear
oil-fired
tidal | | | | | | | | | (i) | State the letters of the three types of power station that use a boiler to turn water into steam. | | | | | | | | | | [1] | | | | | | | | | (ii) | State the letters of the two types of power station that use renewable energy sources. | | | | | | | | | | [1] | | | | | | | | (b) | Ove | erhead power transmission cables supply electrical energy to a town. | | | | | | | | | | ergy losses in the transmission cables can be reduced if the voltage for transmission is eased. | | | | | | | | | (i) | Name the device that steps up the voltage of the electricity before transmission. | | | | | | | | | | [1] | | | | | | | | | (ii) | It is suggested that less energy is lost during transmission if the resistance of the cable is changed. | | | | | | | | | | The resistance of the cable is initially 8.0Ω . | | | | | | | | | | It is suggested that the diameter of the cable should be doubled. | | | | | | | | | | Use the relationship | | | | | | | | | | • resistance is inversely proportional to (diameter) ² | | | | | | | | | | to calculate the resistance of a similar cable that has twice the diameter. | resistance = Ω [2] | | | | | | | | (c) | (i) | In a nuclear power station, nuclear fission of uranium-235 atoms takes place. | | | | | | | | | | Describe what happens to the atoms of uranium-235 during nuclear fission. | [1] | | | | | | | © UCLES 2017 0654/41/O/N/17 3 (ii) Another isotope of uranium, uranium-234, decays by alpha (α) emission to produce an isotope of thorium. Use the correct nuclide notation to complete the symbol equation for this decay process. $$^{234}_{92}U \rightarrow \text{ Th + } \text{He}$$ **4** Fig. 4.1 shows the atmospheric carbon dioxide concentration measured in Hawaii from 1958 to 2005. Fig. 4.1 | (a) | Car | bon dioxide emissions have increased between 1958 and 2005. | |-----|-----|--| | | Sug | gest one reason for the regular fluctuations of carbon dioxide emissions shown in Fig. 4.1. | | | | | | | | [1] | | (b) | Car | bon dioxide is a greenhouse gas. | | | Nan | ne one other greenhouse gas. | | | | [1] | | (c) | (i) | Explain how an increase in carbon dioxide concentration leads to global warming. | [3] | | (ii) | Describe two effects of global warming on the environment. | |-------|--| | | 1 | | | | | | 2 | | | | | | [2] | | (iii) | Suggest two ways governments could encourage industries to reduce carbon dioxide emissions. | | | 1 | | | | | | 2 | | | | | | [2] | | 5 | (a) | (i) | State the | percentage | of nitrogen | in clean | air. | |---|-----|-----|-----------|------------|-------------|----------|------| |---|-----|-----|-----------|------------|-------------|----------|------| | | % | [1 | |------|--|----| | (ii) | Name two other uncombined gaseous elements in clean air. | | | | and | [1 | **(b)** Air bags protect passengers if a car is involved in a collision. When a collision occurs, sodium azide, NaN_3 , decomposes releasing nitrogen gas to inflate the air bag. Fig. 5.1 shows an air bag protecting a passenger. Fig. 5.1 (i) Sodium azide, NaN₃, is an ionic compound. Sodium ions have the formula Na+. Deduce the charge of an azide ion, the formula of an azide ion..... [2] (ii) The balanced equation for the decomposition of sodium azide is shown. $$2NaN_3(s) \rightarrow 2Na(s) + 3N_2(g)$$ Complete the steps in the calculation to find the volume of nitrogen gas that is released when 130 g of sodium azide decomposes completely. Show your working. # Step 1 Calculate the relative formula mass of sodium azide. $[A_r: Na = 23, N = 14]$ | | relative formula mass = | |-----|--| | | Step 2 Calculate the number of moles in 130 g of sodium azide. | | | | | | number of moles = | | | Step 3 Deduce the number of moles of nitrogen gas released by 130 g of sodium azide. | | | number of moles = | | | Step 4 Calculate the volume of nitrogen gas released. [molar gas volume = 24 dm ³] | | | volume of nitrogen gas =dm ³ [4] | | (c) | In industry, nitrogen is used in the Haber process to make ammonia. | | | (i) Describe how nitrogen for the Haber process is obtained from air. |[2] State the word equation for the reaction that forms ammonia in the Haber process. (ii) | 6 | (0) | Λ | house | hoo | on | electric | doo | hal | ı | |---|-----|---|-------|-----|----|----------|------|-----|---| | O | (a) | А | nouse | nas | an | electric | aooi | bei | ı | | (i) | Draw a circuit diagram to show a doorbell connected in series with a switch and a battery. | |-----|--| | | Use the circuit symbol, \bigcap , for an electric bell. | | | | [2] | |------|---|-----| | (ii) | The bell produces a sound when a metal hammer strikes it. | | | | Describe how this action produces a sound. | | | | | | | | | [1] | (b) The house has a heater filled with water at 20 °C. Fig. 6.1 shows the heater. Fig. 6.1 The heating element supplies 2000000 J of energy to the 0.012 m³ of water. The density of water at 20 °C is 1000 kg/m³. The specific heat capacity of water is 4200 J/(kg °C). | (i) | Show that the maximum temperature that the water will reach is approximately 60 | °C. | |------|---|-------| | | State any formula you use and show your working. | | | | formula | | | | | | | | | | | | working | [4] | | (ii) | Suggest why the water will not reach the temperature you calculated in (b)(i) . | [-] | | () | | | | | | [1] | | | | | | 7 | (a) | (i) | Describe how water is lost from a leaf. | | |---|-----|------|---|-----| | | | | | | | | | | | | | | | | | [2] | | | | (ii) | Explain how the water lost from leaves causes water to move up the plant. | - **(b)** A student does an investigation on water loss in leaves. - The student removes four similar-sized leaves, A, B, C and D, from a plant and covers different surfaces of three of these leaves with petroleum jelly, a waterproof substance. - The mass of each leaf is measured and the leaves are left in the same place. - The mass of each leaf is measured again after 5 days. The mass lost from the leaves is an indication of the water loss. Table 7.1 shows the student's results. Table 7.1 | leaf | petroleum
treatment | mass at
start/g | mass at
end/g | difference in mass/g | |------|----------------------------|--------------------|------------------|----------------------| | Α | no covering | 4.1 | 3.3 | | | В | upper surface covered only | 4.1 | 3.5 | 0.6 | | С | lower surface covered only | 4.5 | 4.2 | 0.3 | | D | both surfaces covered | 4.2 | 4.2 | 0.0 | | (i) | Complete Table 7.1 by calculating the mass of water lost in leaf A . | [1] | |-------|---|-----| | (ii) | Suggest why a smaller mass of water is lost in leaf C than in leaf B. | | | | | | | | | [1] | | (iii) | The same investigation is done at a higher temperature. | | | | Predict how this would affect the results. | | | | | | | | | | | | | [2] | **8** Fig. 8.1 shows apparatus a student uses to collect the gas that is made when a solid reacts with a liquid. Fig. 8.1 Table 8.1 shows information about five experiments, P, Q, R, S and T, the student does. The temperature of the contents of the test-tube at the start of each experiment is 20 °C. Table 8.1 | ovnoriment | liquid | solid | | rature/°C | goo mada | |------------|--------------------------------|-----------------------------|----------|--------------|----------------| | experiment | liquid | Solid | at start | after 2 mins | gas made | | P | dilute
hydrochloric
acid | sodium
hydrogencarbonate | 20 | 17 | carbon dioxide | | Q | dilute
hydrochloric
acid | magnesium | 20 | 29 | | | R | dilute sulfuric acid | copper | 20 | 20 | | | s | water | calcium | 20 | 32 | | | т | dilute
hydrochloric
acid | calcium carbonate | 20 | 22 | | (a) (i) Complete Table 8.1 to show the gas made, if any, in experiments Q, R, S and T. If no gas is made, state none. [3] | (ii) | Describe the pH changes, if any, in experiment R and in experiment S . | |-------|---| | | Explain your answers. | | | pH change in R | | | explanation | | | | | | pH change in S | | | explanation | | | | | | [2] | | (iii) | Using Table 8.1, deduce the change in the kinetic energy of the particles in experiment P during the reaction. | | | Explain your answer. | | | change | | | explanation | | | [1] | **(b)** The student repeats experiment **T** several times, changing the concentration of the dilute hydrochloric acid each time. She keeps all of the other variables the same. Her results are shown as a sketch graph in Fig. 8.2. Fig. 8.2 | (i) | Describe the relationship between the concentration of the hydrochloric acid and the rate of the reaction. | |------|--| | | | | | | | | [2] | | (ii) | Explain the results shown in Fig. 8.2 in terms of collisions involving particles of acid. | | | | | | | | | | | | [2] | Please turn over for Question 9. **9** Fig. 9.1 shows a snowboarder moving down a ski slope. Fig. 9.1 (a) Fig. 9.2 shows a speed-time graph for the snowboarder. Fig. 9.2 | The | e mass of the snowboarder is 75 kg. | |-------|--| | (i) | Calculate the maximum kinetic energy of the snowboarder. | | | State the formula you use and show your working. | | | formula | | | | | | | | | working | | | | | | | | | kinetic energy =J [3] | | (ii) | Calculate the acceleration of the snowboarder in the first 10 seconds. | | | Show your working. State the unit of your answer. | | | | | | | | | | | | | | | | | | acceleration = unit [3] | | (iii) | Calculate the force required to produce the acceleration of the snowboarder you calculated in (a)(ii). | | | State the formula you use and show your working. | | | formula | | | | | | | | | working | (b) The snowboarder is exposed to infra-red and ultraviolet radiation from the Sun. Infra-red and ultraviolet radiation are both parts of the electromagnetic spectrum. (i) Place the radiations infra-red and ultraviolet in their correct positions in the incomplete electromagnetic spectrum in Fig. 9.3. | γ-rays | | visible
light | radio waves | |--------|--|------------------|-------------| |--------|--|------------------|-------------| Fig. 9.3 [1] [2] (ii) State the speed at which ultraviolet waves travel from the Sun to the Earth in km/s. Give a reason for your answer. speedkm/s reason (c) Some snow is steadily heated in a beaker. The temperature of the snow is measured as it is heated. Fig. 9.4 shows a graph of the results. Fig. 9.4 Explain why the temperature of the snow does not increase in section **X**. Use the term *latent heat of fusion* in your answer. **10** Fig. 10.1 is a graph to show the blood glucose concentration of a person's blood measured every hour over a period of 15 hours. Fig. 10.1 | (a) (i) Suggest a reason for the change in the blood glucose concentration immediately afte
3 hours. | |---| | [1 | | (ii) State how many hours it takes for the blood glucose concentration to return to its starting
concentration after its peak at 260 mol per dm ³ . | | hours [1 | | (iii) Explain why the blood glucose concentration decreases after its peak at 5 hours. | | | | | | [2 | | (b) Suggest one situation when the blood glucose concentration falls dramatically below normal | | | | [1 | blood glucose concentration /mol per dm³ | (c) | (i) | Control of blood glucose concentration is an example of negative feedback. | | |-----|------|--|-----| | | | Explain the term <i>negative feedback</i> . | | | | | | | | | | | | | | | | [2] | | | (ii) | Name one other example of negative feedback in the human body. | [∸] | | | (11) | Name one other example of negative reedback in the number body. | | Please turn over for Question 11. | 11 | Petroleum is a | liquid fossil | fuel that is a r | nixture containing | many differe | nt hydrocarbons. | |----|----------------|---------------|------------------|--------------------|--------------|------------------| |----|----------------|---------------|------------------|--------------------|--------------|------------------| Petroleum is extracted from the Earth and is then processed into useful products. | (a) | Suggest why petroleum is described as a <i>fossil</i> fuel, but wood is not a <i>fossil</i> fuel. | |-----|---| | | | | | | **(b)** Fractional distillation is used to separate petroleum into simpler, more useful mixtures called fractions. Fig. 11.1 shows this process and two of the useful fractions obtained. Fig. 11.1 | (i) | State the two physical changes involved in forming each fraction. | |-----|--| | | followed by[1] | | | (ii) | The gasoline fraction has a lower average boiling point than gas oil. | | |-----|------|--|------| | | | Explain this in terms of molecular sizes and intermolecular forces. | [3] | | (c) | | acking breaks down large, saturated hydrocarbon molecules into smaller ones. cess also produces some unsaturated hydrocarbons. | This | | | The | e equation shows a chemical reaction that occurs during cracking. | | | | | $C_{16}H_{34} \rightarrow C_xH_y + 3C_2H_4 + C_3H_6$ | | | | Det | termine the values of x and y. | | | | x = | | | | | y = | | [1] | | (d) | (i) | Compound W has the formula C ₃ H ₆ . | | | | | State the name of compound W . | | | | | | [1] | | | (ii) | Compound W is added to aqueous bromine and shaken. | | | | | Describe the changes observed, if any. | | | | | Explain your answer. | | | | | change | | | | | explanation | | | | | | | | | | | [2] | (iii) Compound ${\bf W}$ reacts with hydrogen gas, ${\bf H_2}$, in an addition reaction to produce compound ${\bf X}$. Deduce the formula of compound ${\bf X}$ and complete the diagram in Fig. 11.2 of a molecule of ${\bf X}$. formula Fig. 11.2 [2] 12 (a) Fig. 12.1 shows two forces acting on a swimmer as he swims in a swimming pool. | | Fig. 12.1 | | |------|--|---------| | (i) | State the size and direction of the resultant force. | | | | size | | | | direction |
[2] | | (ii) | State how the speed of the swimmer is changing. | [~] | | | Explain your answer. | | | | | | | | | | | | | [2] | | The | swimmer starts a race when he hears the starting sound from a loudspeaker. | | | (i) | The sound waves travel through the air. | | | | Fig. 12.2 represents a sound wave travelling through the air. | | | | The sound wave travels by a series of compressions (C) and rarefactions (R). | | | | | | | С | R C R C R C R C | | | | Fig. 12.2 | | | | Use Fig. 12.2 to describe one difference between a region of compression and a regi | on | (b) | (ii) | Water waves are transverse waves. Sound waves are longitudinal waves. | |------|--| | | Describe the difference between a transverse wave and a longitudinal wave. | | | You may draw a labelled diagram if it helps your answer. | | | | | | | | | | | | | |
 |
 | |------|---------| | | | | | | |
 |
 | | | | | | | |
 |
 | | | | | | [0] | |
 |
[4] | (c) There are submerged lamps in the pool. Fig. 12.3 shows two light rays from one of these lamps. Fig. 12.3 The critical angle for the boundary between water and air is 48°. | 12.3, co | the p | oaths | of the | e two | rays | after | they | reach | the | surface | at | X a | and | Y. | |----------|-------|-------|--------|-------|------|-------|------|-------|-----|---------|----|------------|-----|-----| |
 |
 | | | | | | | | | | | | | | |
 |
 | | | | | | | | | | | | | | |
 |
 | | | | | | | | | | | | | [3] | 13 Yeast is used in the brewing industry to make beer. The yeast for this process is grown in fermenters. Fig. 13.1 shows a diagram of a fermenter. Fig. 13.1 | (a) | (i) | Suggest and explain why the fermenter is surrounded by a water-filled jacket. | |-----------|-------------|--| | | | | | | | | | | (11) | [2] | | | (ii) | Suggest why the contents of the fermenter are stirred. | | | | [1] | | 4. | | | | (b) | Ana | erobic respiration of yeast is used to make beer in a separate fermenter. | | | (i) | State the word equation for anaerobic respiration in yeast. | | | | [1] | | | (ii) | State one difference between anaerobic respiration in yeast and anaerobic respiration in animals. | | | | | | | | [1] | | (c) | Stat | te one other use of anaerobic respiration in yeast. | | | | [1] | | © UCLES 2 | 017 | 0654/41/O/N/17 | The Periodic Table of Elements | | III/ | 2 | e
L | helium
4 | 10 | Ne | neon
20 | 18 | Ā | argon
40 | 36 | 궃 | krypton
84 | 54 | Xe | xenon
131 | 98 | R | radon | | | | |-------|------|---|--------|---------------|---------------|--------------|------------------------------|----|----|------------------|----|--------|-----------------|----|----|------------------|-------|-------------|-----------------|--------|-----------|--------------------| | | = | | | | 6 | ш | fluorine
19 | 17 | Cl | chlorine
35.5 | 35 | й | bromine
80 | 53 | Н | iodine
127 | 85 | Αŧ | astatine
- | | | | | | 5 | | | | 8 | 0 | oxygen
16 | 16 | ഗ | sulfur
32 | 34 | Se | selenium
79 | 52 | Б | tellurium
128 | 84 | Po | polonium
– | 116 | | livermorium
- | | | > | | | | 7 | z | nitrogen
14 | 15 | ۵ | phosphorus
31 | 33 | As | arsenic
75 | 51 | Sb | antimony
122 | 83 | <u>.</u> | bismuth
209 | | | | | | ≥ | | | | 9 | ပ | carbon
12 | 14 | S | silicon
28 | 32 | Ge | germanium
73 | 20 | Sn | ti 119 | 82 | Ър | lead
207 | 114 | Ρl | flerovium | | | = | | | | 2 | В | boron
11 | 13 | Ρl | aluminium
27 | 31 | Ga | gallium
70 | 49 | In | indium
115 | 81 | l_l | thallium
204 | | | | | | | | | | | | | | | | 30 | Zu | zinc
65 | 48 | g | cadmium
112 | 80 | Нg | mercury
201 | 112 | ပ် | copernicium | | | | | | | | | | | | | 59 | D
C | copper
64 | 47 | Ag | silver
108 | 79 | Αn | gold
197 | 111 | Rg | roentgenium
- | | dn | | | | | | | | | | | 28 | z | nickel
59 | 46 | Pd | palladium
106 | 78 | ₹ | platinum
195 | 110 | Ds | darmstadtium
- | | Group | | | | | | | | | | | 27 | ပိ | cobalt
59 | 45 | 몬 | rhodium
103 | 77 | 'n | iridium
192 | 109 | ¥ | meitnerium
- | | | | | E | hydrogen
1 | | | | | | | 26 | Fe | iron
56 | 44 | R | ruthenium
101 | 92 | SO | osmium
190 | 108 | £ | hassium | | | | | | | | | | | | | 25 | Mn | manganese
55 | 43 | ပ | technetium
- | 75 | Re | rhenium
186 | 107 | Bh | bohrium
– | | | | | | | | loc | ass | | | | 24 | ර් | chromium
52 | 42 | Mo | molybdenum
96 | 74 | ≥ | tungsten
184 | 106 | Sg | seaborgium
- | | | | | | Key | atomic number | atomic symbo | name
relative atomic mass | | | | 23 | > | vanadium
51 | 41 | g | niobium
93 | 73 | <u>Б</u> | tantalum
181 | 105 | Ор | dubnium
– | | | | | | | | ato | rela | | | | 22 | ı | titanium
48 | 40 | Zr | zirconium
91 | 72 | Έ | hafnium
178 | 104 | 꿒 | rutherfordium
— | | | | | | | | | | - | | | 21 | Sc | scandium
45 | 39 | > | yttrium
89 | 57-71 | lanthanoids | | 89–103 | actinoids | | | | = | | | | 4 | Be | beryllium
9 | 12 | Mg | magnesium
24 | 20 | Ca | calcium
40 | 88 | လွ | strontium
88 | 56 | Ba | barium
137 | 88 | Ra | radium | | | _ | | | | က | := | lithium
7 | 11 | Na | sodium
23 | 19 | ¥ | potassium
39 | 37 | Rb | rubidium
85 | 55 | Cs | caesium
133 | 87 | ъ́ | francium | | 71 | Ľ | Intetium | 175 | 103 | ۲ | lawrencium | I | |----|----|--------------|-----|-----|-----------|--------------|-----| | | Υp | - | | | | _ | | | 69 | Tm | thulium | 169 | 101 | Md | mendelevium | ı | | 89 | ш | erbium | 167 | 100 | Fm | fermium | ı | | 29 | 웃 | holmium | 165 | 66 | Es | einsteinium | ı | | 99 | ò | dysprosium | 163 | 86 | ర | californium | ı | | 65 | Тр | terbium | 159 | 26 | 益 | berkelium | ı | | 64 | В | gadolinium | 157 | 96 | Cm | curium | ı | | 63 | En | europium | 152 | 92 | Am | americium | ı | | 62 | Sm | samarinm | 150 | 94 | Pn | plutonium | ı | | 61 | Pm | promethium | ı | 93 | ď | neptunium | ı | | 09 | PΝ | neodymium | 144 | 92 | \supset | uranium | 238 | | 69 | Ā | praseodymium | 141 | 91 | Ра | protactinium | 231 | | 28 | Ce | cerium | 140 | 06 | H | thorium | 232 | | 22 | Га | lanthanum | 139 | 89 | Ac | actinium | ı | lanthanoids actinoids The volume of one mole of any gas is 24 dm³ at room temperature and pressure (r.t.p.). To avoid the issue of disclosure of answer-related information to candidates, all copyright acknowledgements are reproduced online in the Cambridge International Examinations Copyright Acknowledgements Booklet. This is produced for each series of examinations and is freely available to download at www.cie.org.uk after the live examination series.